scala - How to define and use a User-Defined Aggregate Function in Spark SQL? -


i know how write udf in spark sql:

def belowthreshold(power: int): boolean = {         return power < -40       }  sqlcontext.udf.register("belowthreshold", belowthreshold _) 

can similar define aggregate function? how done?

for context, want run following sql query:

val aggdf = sqlcontext.sql("""select span, belowthreshold(opticalreceivepower), timestamp                                     ifdf                                     opticalreceivepower not null                                     group span, timestamp                                     order span""") 

it should return like

row(span1, false, t0)

i want aggregate function tell me if there's values opticalreceivepower in groups defined span , timestamp below threshold. need write udaf differently udf pasted above?

supported methods

spark 2.0+ (optionally 1.6+ different api):

it possible use aggregators on typed datasets:

import org.apache.spark.sql.expressions.aggregator import org.apache.spark.sql.{encoder, encoders}  class belowthreshold[i](f: => boolean)  extends aggregator[i, boolean, boolean]     serializable {   def 0 = false   def reduce(acc: boolean, x: i) = acc | f(x)   def merge(acc1: boolean, acc2: boolean) = acc1 | acc2   def finish(acc: boolean) = acc    def bufferencoder: encoder[boolean] = encoders.scalaboolean   def outputencoder: encoder[boolean] = encoders.scalaboolean }  val belowthreshold = new belowthreshold[(string, int)](_._2 < - 40).tocolumn df.as[(string, int)].groupbykey(_._1).agg(belowthreshold) 

spark >= 1.5:

in spark 1.5 can create udaf although overkill:

import org.apache.spark.sql.expressions._ import org.apache.spark.sql.types._ import org.apache.spark.sql.row  object belowthreshold extends userdefinedaggregatefunction {     // schema input     def inputschema = new structtype().add("power", integertype)     // schema of row used aggregation     def bufferschema = new structtype().add("ind", booleantype)     // returned type     def datatype = booleantype     // self-explaining      def deterministic = true     // 0 value     def initialize(buffer: mutableaggregationbuffer) = buffer.update(0, false)     // similar seqop in aggregate     def update(buffer: mutableaggregationbuffer, input: row) = {         if (!input.isnullat(0))           buffer.update(0, buffer.getboolean(0) | input.getint(0) < -40)     }     // similar combop in aggregate     def merge(buffer1: mutableaggregationbuffer, buffer2: row) = {       buffer1.update(0, buffer1.getboolean(0) | buffer2.getboolean(0))         }     // called on exit return value     def evaluate(buffer: row) = buffer.getboolean(0) } 

example usage:

df   .groupby($"group")   .agg(belowthreshold($"power").alias("belowthreshold"))   .show  // +-----+--------------+ // |group|belowthreshold| // +-----+--------------+ // |    a|         false| // |    b|          true| // +-----+--------------+ 

spark 1.4 workaround:

i not sure if correctly understand requirements far can tell plain old aggregation should enough here:

val df = sc.parallelize(seq(     ("a", 0), ("a", 1), ("b", 30), ("b", -50))).todf("group", "power")  df   .withcolumn("belowthreshold", ($"power".lt(-40)).cast(integertype))   .groupby($"group")   .agg(sum($"belowthreshold").notequal(0).alias("belowthreshold"))   .show  // +-----+--------------+ // |group|belowthreshold| // +-----+--------------+ // |    a|         false| // |    b|          true| // +-----+--------------+ 

spark <= 1.4:

as far know, @ moment (spark 1.4.1), there no support udaf, other hive ones. should possible spark 1.5 (see spark-3947).

unsupported / internal methods

internally spark uses number of classes including imperativeaggregates , declarativeaggregates.

there intended internal usage , may change without further notice, not want use in production code, completeness belowthreshold declarativeaggregate implemented (tested spark 2.2-snapshot):

import org.apache.spark.sql.catalyst.expressions.aggregate.declarativeaggregate import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.types._  case class belowthreshold(child: expression, threshold: expression)      extends  declarativeaggregate  {   override def children: seq[expression] = seq(child, threshold)    override def nullable: boolean = false   override def datatype: datatype = booleantype    private lazy val belowthreshold = attributereference(     "belowthreshold", booleantype, nullable = false   )()    // used derive schema   override lazy val aggbufferattributes = belowthreshold :: nil    override lazy val initialvalues = seq(     literal(false)   )    override lazy val updateexpressions = seq(or(     belowthreshold,     if(isnull(child), literal(false), lessthan(child, threshold))   ))    override lazy val mergeexpressions = seq(     or(belowthreshold.left, belowthreshold.right)   )    override lazy val evaluateexpression = belowthreshold   override def defaultresult: option[literal] = option(literal(false)) }  

it should further wrapped equivalent of withaggregatefunction.


Comments

Popular posts from this blog

html - Firefox flex bug applied to buttons? -

html - Missing border-right in select on Firefox -

python - build a suggestions list using fuzzywuzzy -